z-logo
Premium
A deterministic‐control‐based approach motion by curvature
Author(s) -
Kohn Robert,
Serfaty Sylvia
Publication year - 2006
Publication title -
communications on pure and applied mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.12
H-Index - 115
eISSN - 1097-0312
pISSN - 0010-3640
DOI - 10.1002/cpa.20101
Subject(s) - mathematics , curvature , degenerate energy levels , bellman equation , mathematical analysis , domain (mathematical analysis) , motion (physics) , function (biology) , regular polygon , mean curvature , initial value problem , discrete time and continuous time , boundary (topology) , mathematical optimization , geometry , classical mechanics , statistics , physics , quantum mechanics , evolutionary biology , biology
The level‐set formulation of motion by mean curvature is a degenerate parabolic equation. We show that its solution can be interpreted as the value function of a deterministic two‐person game. More precisely, we give a family of discrete‐time, two‐person games whose value functions converge in the continuous‐time limit to the solution of the motion‐by‐curvature PDE. For a convex domain, the boundary's “first arrival time” solves a degenerate elliptic equation; this corresponds, in our game‐theoretic setting, to a minimum‐exit‐time problem. For a nonconvex domain the two‐person game still makes sense; we draw a connection between its minimum exit time and the evolution of curves with velocity equal to the “positive part of the curvature.” These results are unexpected, because the value function of a deterministic control problem is normally the solution of a first‐order Hamilton‐Jacobi equation. Our situation is different because the usual first‐order calculation is singular. © 2005 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom