Premium
Effect of classification by competitive neural network on reconstruction of reflectance spectra using principal component analysis
Author(s) -
Hajipour Abbas,
ShamsNateri Ali
Publication year - 2017
Publication title -
color research and application
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.393
H-Index - 62
eISSN - 1520-6378
pISSN - 0361-2317
DOI - 10.1002/col.22050
Subject(s) - principal component analysis , reflectivity , artificial neural network , artificial intelligence , pattern recognition (psychology) , spectral line , computer science , mathematics , optics , physics , astronomy
The best way to describe a color is to study its reflectance spectrum, which provide the most useful information. Different methods were purposed for reflectance spectra reconstruction from CIE tristimulus values such as principal components analysis. In this study, the training samples were first divided into 3, 6, 9, and 12 subgroups by creating a competitive neural network. To do that, L*a*b*, L*C*h or L*a*b*C*h were introduced to neural network as input elements. In order to investigate the performance of reflectance spectra reconstruction, the color difference and RMS between actual and reconstructed data were obtained. The reconstruction of reflectance spectra were improved by using a six or nine‐neuron layer with L*a*b* input elements. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 182–188, 2017