Premium
The usability of the CIE colour‐matching functions in the case of CRT monitors
Author(s) -
Borbély Ákos,
Schanda János
Publication year - 2001
Publication title -
color research and application
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.393
H-Index - 62
eISSN - 1520-6378
pISSN - 0361-2317
DOI - 10.1002/col.1063
Subject(s) - artificial intelligence , computer science , matching (statistics) , rgb color model , mathematics , computer vision , color difference , typeface , colorimetry , incandescent light bulb , computer graphics (images) , optics , pattern recognition (psychology) , statistics , physics , enhanced data rates for gsm evolution , operating system
During the past years, several papers have been published that question the use of the CIE colour‐matching functions in the case of metameric samples. Visually matching samples produced on CRT (Cathode Ray Tube) monitors are metameric to most colour stimuli created by illuminating reflecting materials. As CRT monitors are often used in colour design applications, it seemed important to check how well CIE colorimetry will predict such colour matches. To investigate this problem, we set up an experiment in which painted samples were matched with samples produced on a CRT monitor. The colour of incandescent lamp irradiated Munsell samples were visually matched to the mixture of the RGB primaries of a CRT monitor. Both the reflected colour stimuli of the Munsell samples and the emitted stimuli of the monitor were measured spectroradiometrically. Our results imply that there is an observer‐dependent variability among the matches, but we could not find a major difference between the tristimulus data of the hard copy and soft copy presentations that would indicate errors in the CIE colour‐matching functions. The measurement accuracy, quantization errors of the monitor, and the achieved accuracy of the colour matches are treated in this study. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 436–441, 2001