Premium
Computational model of collagen turnover in carotid arteries during hypertension
Author(s) -
Sáez P.,
Peña E.,
Tarbell J. M.,
Martínez M. A.
Publication year - 2015
Publication title -
international journal for numerical methods in biomedical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.741
H-Index - 63
eISSN - 2040-7947
pISSN - 2040-7939
DOI - 10.1002/cnm.2705
Subject(s) - arterial wall , carotid arteries , process (computing) , cardiology , chemistry , biomedical engineering , materials science , medicine , computer science , operating system
Summary It is well known that biological tissues adapt their properties because of different mechanical and chemical stimuli. The goal of this work is to study the collagen turnover in the arterial tissue of hypertensive patients through a coupled computational mechano‐chemical model. Although it has been widely studied experimentally, computational models dealing with the mechano‐chemical approach are not. The present approach can be extended easily to study other aspects of bone remodeling or collagen degradation in heart diseases. The model can be divided into three different stages. First, we study the smooth muscle cell synthesis of different biological substances due to over‐stretching during hypertension. Next, we study the mass‐transport of these substances along the arterial wall. The last step is to compute the turnover of collagen based on the amount of these substances in the arterial wall which interact with each other to modify the turnover rate of collagen. We simulate this process in a finite element model of a real human carotid artery. The final results show the well‐known stiffening of the arterial wall due to the increase in the collagen content. Copyright © 2015 John Wiley & Sons, Ltd.