Premium
A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patient‐specific aortic model
Author(s) -
Caruso Maria Vittoria,
Gramigna Vera,
Rossi Michele,
Serraino Giuseppe Filiberto,
Renzulli Attilio,
Fragomeni Gionata
Publication year - 2015
Publication title -
international journal for numerical methods in biomedical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.741
H-Index - 63
eISSN - 2040-7947
pISSN - 2040-7939
DOI - 10.1002/cnm.2700
Subject(s) - ascending aorta , aortic arch , aorta , hemodynamics , cardiology , anastomosis , brachiocephalic artery , outflow , medicine , aortic valve , common carotid artery , anatomy , surgery , geology , carotid arteries , oceanography
Summary Left ventricular assist devices (LVADs) are mechanical supports used in case of heart failure. Little is known as the height of the anastomosis in aorta might influence the hemodynamic. The aim of the study was to evaluate the fluid dynamic behavior due to the outflow graft placement of a continuous flow LVAD in ascending aorta and to identify the insertion site with the best hemodynamic profile. Computational fluid dynamic studies were carried out to analyze 4 different anastomosis locations in a patient‐specific aorta 3D model coupled with a lumped parameters model: 1 cm (case 1), 2 cm (case 2), 3 cm (case 3) and 4 cm (case 4) above the ST junction. In cases 1 and 2, epiaortic vessels presented a steady flow, while in cases 3 and 4 the flow was whirling. Moreover, maximum velocity occurred before: brachiocephalic trunk (case 1), brachiocephalic and left carotid arteries (case 2), left carotid and left subclavian artery (case 3) and left subclavian vessel and upper wall of aortic arch (case 4). Maximum time averaged wall shear stress (TAWSS) was located in: the ascending aorta (cases 1 and 2), the inferior curvature of the arch (case 3); at the origin of epiaortic vessels (case 4). Furthermore, a flow recirculation (cases 1 and 2), a blood stagnation and chaotic flow (cases 3 and 4) occurred above the aortic valve. The results suggested that the placement of the outflow graft at 2 cm above the ST junction gave the most favorable hemodynamic profile. Copyright © 2015 John Wiley & Sons, Ltd.