Premium
Distribution of corticospinal motor neurons in the postnatal rat: Quantitative evidence for massive collateral elimination and modest cell death
Author(s) -
Oudega Martin,
Varon Silvio,
Hagg Theo
Publication year - 1994
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903470109
Subject(s) - perirhinal cortex , biology , cortex (anatomy) , neuroscience , spinal cord , motor cortex , cerebral cortex , anatomy , retrograde tracing , hippocampus , central nervous system , temporal lobe , stimulation , epilepsy
The postnatal development of rat corticospinal motor neurons (CSMN) was studied by retrograde tracing with cholera toxin B subunit (CTB) injected into the upper cervical dorsal spinal cord on the first postnatal day (P0), P3, P10, P20, and at adulthood. CTB‐labeled neurons were visualized by immunocytochemistry and extensively quantified throughout the cortex. At P0, CSMN were found to an extent similar to that reported in P3 animals with other neuronal tracers, now permitting in vitro studies of neonatal CSMN. Between P0 and P3, the number of labeled neurons increased by 30% to a total maximum of approximately 185,000 in both cortices. The increase occurred throughout the cortex. At P10, the number of labeled CSMN had decreased to 60% of the number at P3. Fewer CSMN were evident particularly in the perirhinal cortex. Between P10 and P20, the number of CSMN decreased further to 52% of the maximal number at P3. This decrease occurred predominantly in the cingulate and parietal cortex. The number of labeled CSMN in rats injected at P0 and analyzed at P20 was 10% lower than the number in P0‐injected littermates that were analyzed at P3, which suggests that only a small portion of the “disappearing” CSMN undergoes developmental neuronal death. Thus, the spinal projection of the remaining 38% is apparently eliminated between P3 and P20. Detailed quantitative analysis of the CSMN distribution demonstrated that neuronal death occurs predominantly in the perirhinal cortex. In contrast, axonal elimination of corticospinal projections occurred throughout the CSMN field, i. e., primarily in the frontal, occipital, and perirhinal cortex between P3–P10 and in the cingulate and parietal cortex between P10–P20. © 1994 Wiley‐Liss, Inc.