z-logo
Premium
Temporal onset of synapsin I gene expression coincides with neuronal differentiation during the development of the nervous system
Author(s) -
Melloni Richard H.,
Degennaro Louis J.
Publication year - 1994
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903420311
Subject(s) - synapsin i , biology , synapsin , synaptogenesis , gene expression , in situ hybridization , neuroscience , neural development , regulation of gene expression , microbiology and biotechnology , gene , genetics , synaptic vesicle , vesicle , membrane
Synapsin I is the best characterized member of a family of nerve terminal‐specific phosphoproteins implicated in the regulation of neurotransmitter release. During development, the expression of synapsin I correlates temporally and topographically with synapse formation, and recent physiological studies (Lu et al. [1992] Neuron 8:521–529.) have suggested that synapsin I may participate in the functional maturation of synapses. To better understand the temporal relationship between synapsin I gene expression and particular cellular events during neuronal development, we have used in situ hybridization histochemistry to localize synapsin I mRNA throughout the rat central and peripheral nervous systems during embryonic and postnatal development. From the earliest embryonic time points assayed (E12), the expression of the synapsin I gene was detectable in both the central and peripheral nervous systems. While, in general, levels of synapsin I mRNAs were high in utero, synapsin I cDNA probes revealed specific patterns of hybridization in different regions of the embryonic nervous system. To determine precisely the temporal onset of expression of the synapsin I gene during neuronal development, we examined in detail the appearance of synapsin I mRNA during the well characterized postnatal development of granule cells of the rat cerebellum and hippocampus. In both regions, the onset of synapsin I gene expression correlated with the period of stem cell commitment to terminal differentiation. Finally, our data demonstrate that, in a second phase, synapsin I gene expression increases to a maximum for a given neuronal population during a particular phase of differentiation, i.e., synaptogenesis. © 1994 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here