Premium
Reduced cortical inhibitory synaptogenesis in organotypic cerebellar cultures developing in the absence of neuronal activity
Author(s) -
Seil Fredrick J.,
DrakeBaumann Rosemarie
Publication year - 1994
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903420305
Subject(s) - synaptogenesis , biology , neuroscience , inhibitory postsynaptic potential , cortical neurons , cerebellum
Organotypic cerebellar cultures derived from newborn mice were continuously exposed to medium containing tetrodotoxin and elevated levels of magnesium to block all electrical activity. After 2 weeks in vitro, no activity was evident during the first 15–20 minutes following transfer to a recording medium without blocking agents. Thereafter, cortical discharge rates increased until a state of sustained hyperactivity was reached. Ultrastructural examination of such cultures revealed a reduction of inhibitory Purkinje cell somatic synapses to half the control value along with an even greater reduction of axodendritic synapses (largely inhibitory) in the cortical neuropil. No loss of axospinous synapses (excitatory) was evident. These results support the concept that spontaneous neuronal activity is necessary for the full development of inhibitory circuitry. © 1994 Wiley‐Liss, Inc.