Premium
Monoclonal antibody labels olfactory and visual pathways in Drosophila and Apis brains
Author(s) -
Bicker Gerd,
Kreissl Sabine,
Hofbauer Alois
Publication year - 1993
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903350310
Subject(s) - biology , mushroom bodies , immunocytochemistry , monoclonal antibody , antigen , antennal lobe , microbiology and biotechnology , antibody , drosophila (subgenus) , olfactory system , neuroscience , anatomy , drosophila melanogaster , immunology , gene , genetics , endocrinology
We employed a monoclonal antibody raised against Drosophila brain homogenate for a comparative immunocytochemical analysis of visual and olfactory pathways in brains of two insect species. On Western blots of Drosophila and Apis nervous tissue, antibody fb45 recognized an antigen with an apparent molecular weight higher than 180 kD. Application of the antibody to sections of Drosophila and Apis brain stained certain interneurons which conspicuously fasciculate in common tracts or neuropilar compartments. Both in Drosophila and in Apis , the antigen was also expressed on the perineural sheath and granular cell compartments in the majority of neuronal cell bodies. The antibody stained monopolar cells in the visual system of both species, and in Apis those fibers of the anterior superior optic tract which link the medulla with the mushroom bodies. In Drosophila , bundles of Kenyon cells of the mushroom bodies were stained. In worker bees and drones, the relay neurons of the median and lateral antennoglomerular tracts were labelled. Since the recognition of the antigen does not require fixation, the antibody can be employed to label selectively living neurons in dissociated cell culture. This opens up the possibility for future functional studies on the role of the antigen in vitro. © 1993 Wiley‐Liss, Inc.