Premium
Giant neurons in the caudal pontine reticular formation receive short latency acoustic input: An intracellular recording and HRP‐study in the rat
Author(s) -
Lingenhöhl Kurt,
Friauf Eckhard
Publication year - 1992
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903250403
Subject(s) - neuroscience , reticular connective tissue , biology , paramedian pontine reticular formation , reticular formation , superior olivary complex , medial longitudinal fasciculus , anatomy , thalamic reticular nucleus , nucleus , electrophysiology , cochlear nucleus , central nervous system , midbrain
The reticular formation is composed of heterogeneous cell populations with multiple functions. Among these multiple functions is the processing of sensory information in the context of behavior. The purpose of the present study was to identify and characterize neurons in the reticular formation of the rat that receive auditory input. In order to do so, we combined intracellular electrophysiology in vivo with intracellular injection of horseradish peroxidase, enabling us to correlate electrophysiology unequivocally with anatomy at the single cell level. We found that many neurons in the caudal pontine reticular nucleus (PnC), which we analyzed intracellularly, responded to acoustic stimuli and were excited at short latency (mean EPSP latency: 2.6 ms; mean spike latency: 5.2 ms). This short latency suggests a direct input from the cochlear nucleus, the first central nucleus of the auditory pathway. The morphology revealed that the acoustically driven PnC neurons have very large somata (mean diameter: 44.0 m̈m). They can therefore be referred to as “ giant PnC neurons .” Complex dendritic arbors extended from these neurons into the reticular formation and thus formed a large membrane surface for the integration of multimodal inputs. Most of the giant PnC neurons sent their axons caudally into the medial longitudinal fasciculus and can therefore be regarded as reticulospinal neurons. The results demonstrate that the giant reticulospinal PnC neurons are in a position to transmit acoustic information very quickly to spinal cord neurons and to receive converging input from other parts of the brain. They are thus good candidates for participation in the mediation and modulation of acoustically elicited behaviors, such as the short latency acoustic startle response. © 1992 Wiley‐Liss, Inc.