Premium
Isthmotectal axons make ectopic synapses in monocular regions of the tectum in developing Xenopus laevis frogs
Author(s) -
Udin Susan B.,
Fisher Mark D.,
Norden Jeanette J.
Publication year - 1992
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903220402
Subject(s) - xenopus , biology , neuroscience , optic tectum , tectum , anatomy , central nervous system , midbrain , biochemistry , gene
During the development of binocular maps in the tectum of Xenopus laevis , axons that relay input from the ipsilateral eye via the nucleus isthmi undergo a prolonged period of shifting connections. This shifting accompanies the dramatic change in eye position that takes place as the laterally placed eyes of the tadpole move dorsofrontally. There is a concomitant expansion of the proportion of tectum that receives contralateral retinotectal input corresponding to the binocular portion of the visual field. Electrophysiological recording demonstrates that ipsilateral units are present in those rostral tectal zones, and anatomical methods show that the isthmotectal axons arborize densely in the rostral region but also extend sparser branches into the caudal zone, which is occupied by contralateral inputs with receptive fields in the monocular zone of the visual field. A mechanism that aligns the ipsilateral and contralateral maps is activity‐dependent stabilization of isthmotectal axons that exhibit firing patterns correlated with those of nearby retinotectal axons. In order for activity patterns to function in stabilizing correct connections and promoting the withdrawal of incorrect connections, synaptic communication of some sort is hypothesized to be essential. We have investigated whether isthmotectal axons make morphologically identifiable synapses during development and where such synapses are located. We find evidence for morphologically identifiable synapses in all regions of the tectum, along with many growth cones and structures that are probably immature synapses. As in the adult, the synapses contain round, clear vesicles, have asymmetric specializations, and terminate on structures that appear to be dendrites. In both adult and tadpole, the rarity of serial synapses involving isthmotectal terminals suggests. That the interactions between retinotectal and isthmotectal inputs are mediated by postsynaptic dendrites. © 1992 Wiley‐Liss, Inc.