z-logo
Premium
Light microscopic golgi study of mitral/tufted cells in the accessory olfactory bulb of the adult rat
Author(s) -
Takami Shigeru,
Graziadei Pasquale P. C.
Publication year - 1991
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903110106
Subject(s) - biology , olfactory bulb , soma , glomerulus , anatomy , golgi apparatus , rhinencephalon , olfactory system , neuroscience , central nervous system , microbiology and biotechnology , endoplasmic reticulum , kidney , endocrinology
Abstract Mitral/tufted cells (MTCs) of the accessory olfactory bulb (AOB) of adult rats were investigated light microscopically with the rapid Golgi method. The somata of the MTCs, appearing ovoid or triangular in shape, are distributed throughout the external plexiform layer. The soma size varies from small to large (12–26 μm). Apical dendrites originating from the soma enter the glomerular layer to provide branches that form the glomerular arbors. After making a glomerular arbor, some dendrites develop a second arbor (en passant and terminal arbors, respectively). The MTCs have a very diverse dendritic branching pattern and most have a variable number of glomerular arbors per cell (up to 6); we have tentatively classified the MTCs into simple, intermediate, and complex. Of the glomerular arbors, 80% have a diameter of less than 50 μm. The glomerular arbors have been classified as baskets (small spherical or ovoid) with short loopy processes; balls of yarn (large and nearly spherical) with loosely intermingled thick loops; and bushes (small to large and rather polymorphic) with irregular processes. The MTCs send dendritic arbors to terminate in one or more glomeruli where they are arranged in several different types of endings. Since it is generally believed that the dendrites of mitral and tufted cells of the main olfactory bulb terminate in only one glomerulus, the difference in the termination of the dendrites of the MTCs may represent a morphological characteristic that is relevant to the coding and/or integration of sensory information.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here