z-logo
Premium
Nerve growth factor receptor immunoreactivity in the new world monkey ( Cebus apella ) and human cerebellum
Author(s) -
Mufson Elliott J.,
Higgins Gerald A.,
Kordower Jeffrey H.
Publication year - 1991
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903080405
Subject(s) - cerebellum , biology , purkinje cell , nerve growth factor , in situ hybridization , immunohistochemistry , granular layer , pathology , neuroscience , anatomy , receptor , messenger rna , medicine , immunology , biochemistry , gene
Abstract The present study used the NGFR‐5 monoclonal antibody raised against human nerve growth factor receptor (NGFR) to determine the extent of NGFR immunoreactivity within the embryonic and young adult Cebus apella cerebellum as well as the human cerebellum. Immunohistochemically processed tissue revealed NGFR expressing Purkinje cell somata, axons, and dendrites, the latter being observed within the molecular layer of both adult species. Within all regions of the cerebellum we observed both darkly and lightly immunostained Purkinje cells. The proximal axons of these cells, which were visualized for short distances within the granular cell layer, appeared to contain bulbous aggregates of reaction product. In sagittal sections, the full extent of the Purkinje cell dendritic tree was observed in the more lightly stained portions of the cerebellum. In situ hybridization experiments revealed NGFR mRNA within Purkinje cells in a pattern similar to that seen with immunohistochemistry. The distribution of NGFR immunoreactivity within the cerebellum exhibits a general topographic organization with the heaviest and most consistent staining occurring within the archi‐ and neocerebellum and weaker staining within the paleocerebellum. In fetal Cebus monkey cerebellum obtained at gestational day 50 and 70, NGFR immunoreactivity was observed as a band composed of developing Purkinje cell neurites. These profiles were seen in the paleo‐ and neocerebellum, but not the archicerebellum. The present investigation is the first demonstration of NGFR immunoreactive profiles in the adult monkey and human cerebellum. These findings suggest that nerve growth factor may influence locomotor and vestibular behaviors that are mediated by cerebellar circuitry. The precise mode of action for the NGF/NGFR system within the cerebellum remains to be determined.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here