Premium
Matching of receptive fields in the association projections from SI to SII of cats
Author(s) -
Manzoni Tullio,
Barbaresi Paolo,
Bernardi Stefano
Publication year - 1990
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.903000306
Subject(s) - forelimb , cats , receptive field , horseradish peroxidase , biology , carnivora , anatomy , injection site , electrophysiology , neuroscience , biomedical engineering , computer science , medicine , biochemistry , enzyme , embedded system , endocrinology
Abstract Anatomical and electrophysiological experiments were performed on cats to investigate the pattern of divergence and convergence in the association projections from the first (SI) to the second (SII) somatic sensory cortex and to ascertain whether diverging and converging fibre components from SI have receptive fields (RFs) matching those of target neurons in SII. In the first group of six cats, a single deposit of horseradish peroxidase (HRP) was iontophoretically placed (2–4 μAfor 20 minutes) into an electrophysiologically identified site of the SII map: the digit (3 cats), forepaw (2 cats), and arm (1 cat) zones. The forelimb representation in ipsilateral SI was subsequently explored with microelectrodes and RFs from small clusters of neurons systematically mapped. Planar maps of this area were reconstructed with the aid of a computer from serial sections, to correlate on the tangential plane the topographical distribution of retrogradely labelled association neurons with the physiological map of the forelimb. Since diverging projections were observed from a zone of SI to multiple zones of SII, double‐labelling experiments were carried out in a second group of three cats, in which two retrograde fluorescent dyes (diamidino yellow and fast blue) were injected by pressure into two different sites of the SII map, to ascertain whether SI sends diverging projections by branching axons. HRP injections in SII retrogradely labelled a discrete number of association neurons in SI. Their distribution area was several tens of times wider than that covered by the injection site. This suggests that a remarkable amount of divergence and convergence exists in the association projections from SI to SII. Despite the substantial difference in the extent of the injected and labelled areas, RFs of afferent and target neurons corresponded closely. Injections covering a small region within a single digit zone of SII labelled neurons throughout the entire representation of the same digit in SI, while neurons labelled in somatotopically inappropriate zones were rare. RFs mapped from several sites of the labelled region in SI were individually smaller than the RF mapped from the injection site in SII, but the overall size of afferent RFs encompassed that of target neurons. Divergence and convergence in the SI projections to SII zones representing more proximal portions of the forelimb may be even greater since HRP injections in the forepaw and arm zones of SII labelled a number of neurons also in the digit zone of SI, providing the RFs mapped from the injection sites were sufficiently wide to include the digits. Double‐labelling experiments showed that these long‐range diverging projections and those from the same digit zone of SI to the somatotopically matched zone of SII contain rare branched axons. Divergence and convergence in the SI projections to SII of cats might subtend a mechanism to overcome RF size disparity between the two somatosensory areas and to ensure a virtually complete matching of sensory information between afferent and target neurons.