z-logo
Premium
Cutaneus trunci muscle reflex of the guinea pig
Author(s) -
Blight Andrew R.,
McGinnis Michael E.,
Borgens Richard B.
Publication year - 1990
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.902960408
Subject(s) - reflex , anatomy , sensory system , receptive field , stimulus (psychology) , spinal cord , dermatome , stimulation , electromyography , neuroscience , lumbar , cutaneous nerve , triceps reflex , biology , lateral funiculus , medicine , withdrawal reflex , psychology , psychotherapist
The cutaneus trunci muscle reflex in guinea pigs was studied with a combination of video analysis, electromyography, lesioning, and light microscopy. The muscle forms a bilateral, subdermal sheet over much of the trunk. Local contractions of the dorsal part of the muscle are produced in response to brief tactile or electrical stimulation of the skin and consist of a twitch centered 1–2 cm rostral of the stimulus site. The reflex receptive field covers most of the thoracic and lumbar dorsal surface. The sensory information is carried via segmental dorsal cutaneous nerves. Receptive fields of adjacent nerves overlap and form rectangular areas perpendicular to the midline, at thoracic levels. Motor innervation projects through the lateral thoracic nerves of the brachial plexus. The motoneurons are located near the cervical thoracic junction ((C7‐T1)). Lesions of the lower thoracic cord indicate that ascending sensory information is carried to the motor nuclei via the ventral half of the lateral funiculus. This pathway conveys information primarily from ipsilateral skin. There is a weaker input from contralateral skin, crossing at segmental levels. Electromyographic responses to brief electrical stimulation of lower thoracic skin occur usually as 10–12 msec bursts at latencies of 10–20 msec, and do not readily habituate or fatigue at stimulus frequencies below 10 Hz. The reflex persists under light pentobarbital anesthesia. This combination of characteristics makes the reflex useful for a variety of physiological and pathophysiological studies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here