Premium
Age changes in axon number along the cervical ventral spinal nerve roots in rats
Author(s) -
Fraher J. P.,
O'Sullivan V. R.
Publication year - 1989
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.902800202
Subject(s) - axon , biology , anatomy , dorsal root ganglion , nerve root , spinal cord , neuroscience , dorsum
Abstract Axon counts were made at two standardised levels of C7 ventral spinal nerve roots from 46 female rats representing nine ages between birth and 500 days. The objective was to provide a definitive account of proximodistal changes in axon numbers and of age changes in axon numbers both during postnatal development and at several stages during maturity. At each age there is a proximodistal increase in the numbers of axons in all categories examined (myelinated, promyelin, transitional, and fetal) between levels midway along the subarachnoid course of the root and where it is apposed to but separate from the dorsal root ganglion. During maturation and throughout maturity axon totals change similarly at both levels: After a slight increase immediately postnatum, they decline sharply between 4 and 20 days due to a marked loss of unmyelinated axons. A gradual decline in myelinated axon numbers continues to 500 days. While these changes are occurring, axon numbers in all categories show a proximodistal increase throughout. The magnitude of this increase lessens with age for all but the transitional category due to a preferential decrease in numbers distally. Though these observations do not differentiate between axon branching and looping of sensory axons into the ventral root as a cause of the proximodistal increase in numbers, they tend to support the former. At each age during maturation axon proportions at proximal and distal levels correspond well for each animal, indicating that axon segregation proceeds at related rates within each root. Age changes in axon proportions within the transitional and fetal categories indicate that the postnatal stage of axon segregation results from axon loss, rather than Schwann cell proliferation.