z-logo
Premium
Spinomesencephalic tract: Projections from the lumbosacral spinal cord of the rat, cat, and monkey
Author(s) -
Yezierski Robert P.
Publication year - 1988
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.902670109
Subject(s) - midbrain , superior colliculus , spinal cord , anatomy , red nucleus , biology , pretectal area , neuroscience , nucleus , central nervous system
Anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase was used to determine the terminal domain of the projection from the lumbosacral spinal cord to the midbrain in the rat, cat, and monkey. Results have shown that several midbrain regions receiving afferent input from this level of the spinal cord are common to the three species examined. Structures innervated by this projection were located throughout the full rostrocaudal extent of the midbrain. The strongest projections were to the intercollicular region and caudal midbrain contralateral to injection sites in the spinal cord. Terminal labeling in the rostral midbrain, except that observed in the nucleus of Darkschewitsch, was substantially less than that observed at more caudal midbrain levels. Structures receiving the strongest input from the spinal cord included the central gray, nucleus cuneiformis, the deep and intermediate layers of the superior colliculus, and the intercollicular nucleus. Other structures receiving afferent input from the lumbosacral spinal cord included the anterior and posterior pretectal nuclei, red nucleus, Edinger‐Westphal nucleus, interstitial nucleus of Cajal, and the mesencephalic reticular formation. It is concluded that the spinal projection to the midbrain is a multicomponent projection consisting of several pathways terminating in discrete midbrain regions. Considering the diverse functions associated with midbrain regions receiving spinal input and the response and receptive field properties of cells belonging to this pathway, the results of the present study are discussed in relation to the potential role of the spinomesencephalic tract in somatic, visceral, and motor function.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here