Premium
Anatomy of physiologically identified eye‐movement‐related pause neurons in the cat: Pontomedullary region
Author(s) -
Ohgaki Tohru,
Curthoys Ian S.,
Markham Charles H.
Publication year - 1987
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.902660106
Subject(s) - abducens nucleus , biology , neuroscience , soma , anatomy , oculomotor nucleus , eye movement , medial longitudinal fasciculus , inhibitory postsynaptic potential , vestibular nuclei , nucleus , cell bodies , vestibular system , midbrain , central nervous system
Pause neurons (PNs) are inhibitory neurons close to the midline at the pontomedullary junction that fire tonically and then cease firing just prior to quick eye movements of visual or vestibular origin. Previous physiological evidence has shown that these neurons have a role of central importance in the generation of rapid eye movements in any direction and all major models of ocular motor control incorporate PNs as major elements. In this study in cats, we injected horseradish peroxidase intracellularly into somata or axons of physiologically identified PNs. After appropriate tissue preparation, cell body and axonal reconstructions were performed, with the aid of a camera lucida‐equipped microscope. Fifty‐three PNs were stained and reconstructed. These consisted of 17 cell bodies and dendrites and 36 axons. Seven of these included both cell bodies and axons. PN somas lay close to the midline in the nucleus raphe pontis and centralis superior, had extensive dendritic arborizations tending to arise from either pole of the elongated soma, and had axons which typically crossed the midline and bifurcated into long branches which extended rostrally and caudally, inferior to the medial longitudinal fasciculus. There were major terminal arborizations and boutons in areas just rostral and caudal to the abducens nucleus in areas where two types of premotor neurons, excitatory and inhibitory burst neurons, are concentrated. Many axosomatic contacts were noted. Other terminal arborizations and boutons were found close to the midline in a region rostral to abducens nucleus containing other neurons known to burst prior to quick eye movements, and in the nucleus reticularis gigantocellularis. Rostral stem axons could be traced to the level of the trochlear nucleus and inferior to the medial longitudinal fasciculus. The caudal stem axons could be traced parallel to the midline and inferior to the medial longitudinal fasciculus and as far caudally as the hypoglossal nucleus.