Premium
Time course of reactive synaptogenesis in the subcortical somatosensory system
Author(s) -
Wells Joseph,
Tripp Leslie N.
Publication year - 1987
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.902550312
Subject(s) - synaptogenesis , biology , somatosensory system , neuroscience , cognitive science , psychology
These experiments were designed to determine when synaptogenesis begins in the adult rat ventral posterolateral nucleus of the thalamus following lesions of the dorsal column nuclei. Given the relatively uncomplicated structure of the neuropil in the ventral posterolateral nucleus of the rat, the specificity of reactive synaptogenesis of the lemniscal input and the effect of the loss of lemniscal terminals on terminals from other sources could be determined. By use of morphometric analysis of electron micrographs, the numerical density of the 3 terminal types in the neuropil was determined at a series of postlesion survival times ranging from 12 hours to 50 days. Synaptogenesis began about 30 days after the lesions of the dorsal column nuclei and was complete by 50 days. The slow onset of synaptogenesis was in response to a loss of the lemniscal terminals, which account for only 3% of the total number of synapses in the ventral posterolateral nucleus. The low level of synaptogenesis early in the recovery process differs from the recovery seen in other central nervous system sites, which show an early rapid increase in synapses in response to much greater denervation. The loss of lemniscal terminals has relatively little effect on the numerical density or distribution of the terminals of other types. The new terminals that are formed come both from axons that originate from the undamaged portion of the dorsal column nuclei and from axons originating in the spinal cord.