Premium
Anatomical connections of the nucleus prepositus of the cat
Author(s) -
McCrea R. A.,
Baker R.
Publication year - 1985
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.902370308
Subject(s) - medial longitudinal fasciculus , anatomy , pretectal area , zona incerta , vestibular nuclei , biology , brainstem , reticular formation , paramedian pontine reticular formation , neuroscience , inferior colliculus , nucleus , central nervous system , midbrain
The afferent and efferent connections of the nucleus prepositus hypoglossi with brainstem nuclei were studied using anterograde and retrograde axonal transport techniques, and by intracellular recordings and injections of horseradish peroxidase into prepositus hypoglossi neurons. The results of experiments in which horseradish peroxidase was injected into the prepositus hypoglossi suggest that the major inputs to the prepositus hypoglossi arise from the ipsi‐ and contralateral perihypoglossal nuclei (particularly the prepositus hypoglossi and intercalatus), vestibular nuclei (particularly the medial, inferior, and ventrolateral nuclei), the paramedian medullary and pontine reticular formation, and from the cerebellar cortex (flocculus, paraflocculus, and crus I; the nodulus was not available for study). Regions containing fewer labeled cells included the interstitial n. of Cajal, the rostral interstitial n. of the medial longitudinal fasciculus, the n. of the posterior commissure, the superior colliculus, the n. of the optic tract, the extraocular motor nuclei, the spinal trigeminal n., and the central cervical n. The efferent connections of the prepositus hypoglossi were studied by injecting 3 H‐leucine into the prepositus hypoglossi, and by following the axons of intracellularly injected prepositus hypoglossi neurons. The results suggest that in addition to the cerebellar cortex, the most important extrinsic targets of prepositus hypoglossi efferents are the vestibular nuclei (particularly the medial, inferior, and ventrolateral nuclei, and the area X), the inferior olive (contralateral dorsal cap of Kooy and ipsilateral subnucleus b of the medial accessory olive), the paramedian medullary and pontine reticular formation, the reticular formation surrounding the parabigeminal n., the contralateral superior colliculus and pretectum, the extraocular motor nuclei (particularly the contralateral abducens nucleus and the ipsilateral medial rectus subdivision of the oculomotor nucleus), the ventral lateral geniculate n., and the central lateral thalamic nucleus. Other areas which were lightly labeled in the autoradiographic experiments were the contralateral spinal trigeminal n., the n. raphe pontis, the Edinger Westphal n., the zona incerta, and the paracentral thalamic n. Many of the efferent connections of the prepositus hypoglossi appear to arise from principal prepositus hypoglossi neurons whose axons collateralize extensively in the brainstem. On the other hand, small prepositus hypoglossi neurons project to the inferior olive, and multidendritic neurons project to the cerebellar flocculus, apparently without collateralizing in the brainstem. The functional significance of the connections is discussed in light of the physiological activity of prepositus hypoglossi neurons and the physiological activity of the areas the prepositus hypoglossi receives inputs from and projects to. We conclude that the afferents to the prepositus hypoglossi arise primarily from regions of the brain which are involved in the immediate supranuclear control of eye and head movements, and that most of the targets of prepositus hypoglossi projections contain neurons whose activity is related to eye movements. We suggest that the function of the prepositus hypoglossi may be to construct an efference copy of oculomotor activity, and to distribute this signal to areas of the brainstem which are involved in various aspects of gaze control.