Premium
Afferents to the ventral tegmental nucleus of gudden in the mouse, rat, and cat
Author(s) -
Irle Eva,
Sarter Martin,
Guldin Wolfgang O.,
Markowitsch Hans J.
Publication year - 1984
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.902280406
Subject(s) - neuroscience , biology , interpeduncular nucleus , anatomy , ventral tegmental area , zona incerta , tegmentum , raphe nuclei , dorsal raphe nucleus , limbic system , pretectal area , substantia innominata , nucleus , basal forebrain , midbrain , central nervous system , dopamine , dopaminergic , serotonergic , biochemistry , receptor , serotonin
Afferents to the ventral tegmental nucleus of Gudden (VT) were investigated in mice, rats, and cats. Unilateral and bilateral injections or iontophoretical applications of horseradish peroxidase (HRP) were made into the region of the VT. The entire cerebrum was then screened for labeled neurons. Following injection situated principally within the VT, in all three species many retrogradely labeled neurons were observed in the mamillary bodies and the lateral habenular nuclei. Fewer labeled cells were observed in the prefrontal cortex, the basal forebrain, various hypothalamic nuclei, the interpeduncular nucleus, nucleus of the posterior commissure, nucleus of Darkschewitsch and interstitial nucleus of Cajal, vestibular nucleus, and nucleus praepositus hypoglossi. Scant but consistent labeling occurred in the cingular, retrosplenial, and insular cortices, within the medial forebrain bundle, fields of Forel, zona incerta, ventral tegmental area of Tsai, substantia nigra, pretectal area, periaqueductal gray, dorsal tegmental nucleus, locus ceruleus, and raphe complex. Our results show a high similarity in the distribution of afferent connections converging on the VT of mice, rats, and cats. They indicate furthermore that the VT is reached by a variety of cortical and subcortical afferents, which belong either to the limbic system or to brain stem regions related to motor, sensory, and autonomic functions. It is suggested that the VT subserves as a midbrain core structure of the limbic system, which is responsible for the transfer of motor, sensory, and autonomic informations arising within the brain stem to limbic forebrain structures.