z-logo
Premium
The organization of the fibers in the optic nerve of normal and tectum‐less Rana pipiens
Author(s) -
Reh Thomas A.,
Pitts Eleanor,
ConstantinePaton Martha
Publication year - 1983
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.902180305
Subject(s) - tectum , anatomy , optic nerve , biology , retina , optic tract , rana , retinal ganglion cell , ganglion , axon , nerve fiber , optic chiasma , visual system , retinal , axoplasmic transport , optic chiasm , neuroscience , midbrain , central nervous system , biochemistry
We have examined the detailed order of retinal ganglion cell (RGC) axons in the optic nerve and tract of the frog, Ranapipiens. By using horseradish peroxidase (HRP) injections into small regions of theretina, the tectum, and at various points along the visual pathway, it hasbeen possible to follow labelled fibers throughout their course in the nerve and tract. Several surprising features in the order of fibers in the visual pathway were discovered in our investigation. The fascicular pattern of RGC axons in che retina is similar to that described in other vertebrates; however, immediately central to their entry into the optic nerve head, approximately half of the fibers from the nasal or temporal retina cross over to the opposite side of the nerve. Although the axons from the dorsal and ventral regions of the retina generally remain in the dorsal and ventral regions of the nerve, some fiber crossing occurs in those axons as well. The result of this seemingly complex rearrangement is that the optic nerve of Rana pipiens contains mirror symmetric representations of the retinal surface on either side of the dorsal ventral midline of the nerve. The fibers in each of these representation are arranged as semicircles representing the full circumference of the retina. This precise fiber order is preserved in the nerve until immediately periphearal to the optic chiasm, at which point age‐related axon from both side of the nerve bundle together. Consequently, when a small pellet of HRP is placed in the chiasmic region of the nerve, an annualus of retinal ganglion cells and a corresponding annulus of RGC terminals in the tectum are la belled. As the age‐related bundles of fibers emerge from the chiasm they split to form a medial bundle and a lateral bundle, which grow in the medial and lateral branches of the optic tract, respectively. Although the course followed by RGC axons in the visual pathv/ay is complex, we propose a model in which the organization of fibers in the nerve and tract can arise from a few rules of axon guidance. To determine whether the optic tecta, the primary retinal targets, play a role in the development and organization of the optic nerve and tract, we removed the tectal primordia in Rana embryos and examined the order in the nerve when the animals had reached larval stages. We found that the order in the nerve and tract was well preserved in tectumless frogs. Therefore, we propose that guidance factors independent of the target direct axon growth in the frog visual system.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here