Premium
Retinal recipient nuclei in the painted turtle, Chrysemys picta : An autoradiographic and HRP study
Author(s) -
Bass Andrew H.,
Northcutt R. Glenn
Publication year - 1981
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.901990108
Subject(s) - pretectal area , optic tract , biology , anatomy , nucleus , diencephalon , tectum , lateral geniculate nucleus , midbrain , zona incerta , optic nerve , thalamus , retina , neuroscience , central nervous system
Retinofugal pathways in the painted turtle were examined with autoradiographic and HRP methods. The majority of the retinal fibers decussate at the optic chiasm and course caudally to terminate in 12 regions of the diencephalon and mesencephalon. The pars dorsalis of the lateral geniculate nucleus is the densest target in the thalamus. Two nuclei dorsal to pars dorsalis—the dorsal optic and dorsal central nuclei—receive optic input. Three nuclei ventral to pars dorsalis are retinal targets—the ventral geniculate nucleus, nucleus ventrolateralis pars dorsalis, and nucleus ventrolateralis pars ventralis. Contralateral fibers course through the pretectum where they terminate in nucleus geniculatis pretectalis, nucleus lentiformis mesencephali, nucleus posterodorsalis, and the external pretectal nucleus. Retinal fibers also terminate within the superficial zone of the optic tectum. HRP material demonstrates three optic fiber layers—laminae 9, 12, and 14. Optic fibers leave the main optic tract as a distinct accessory tegmental optic pathway and terminate in the basal optic nucleus. Ipsilateral retinal terminals occur in a pars dorsalis and a pars ventralis of the lateral geniculate nucleus, the dorsal optic nucleus, nucleus posterodorsalis, the basal optic nucleus, and in laminae 9 and 12 of the optic tectum. Rostrally, the ipsilateral tectal fibers occupy two zones along the medial and lateral tectal roof; these zones converge caudally and are continuous along the caudal wall of the tectum.