z-logo
Premium
Nitrergic neurons of the forepaw representation in the rat somatosensory and motor cortices: A quantitative study
Author(s) -
Guimaraes Bárbara de Paula Pires Franco,
Curado Marco Rocha,
NogueiraCampos Anaelli Aparecida,
Houzel Jean Christophe,
Gattass Ricardo
Publication year - 2021
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.25192
Subject(s) - somatosensory system , biology , neuroscience , sensory system , forelimb , anatomy , population , diaphorase , medicine , environmental health , biochemistry , enzyme
Nitrergic neurons (NNs) are inhibitory neurons capable of releasing nitric oxide (NO) that are labeled with nicotinamide adenine dinucleotide phosphate diaphorase histochemistry. The rat primary somatosensory (S1) and motor (M1) cortices are a favorable model to investigate NN populations by comparing their morphology, since these areas share the border of forepaw representation. The distribution of the Type I NN of the forepaw representation in the S1 and M1 cortices of the rat in different laminar compartments and the morphological parameters related to the cell body and dendritic arborization were measured and compared. We observed that the neuronal density in the S1 (130 NN/mm 3 ) was higher than the neuronal density in the M1 (119 NN/mm 3 ). Most NN neurons were multipolar (S1 with 58%; M1 with 69%), and a minority of the NN neurons were horizontal (S1 with 6%; M1 with 12%). NN found in S1 had a higher verticality index than NN found in M1, and no significant differences were observed for the other morphological parameters. We also demonstrated significant differences in most of the morphological parameters of the NN between different cortical compartments of S1 and M1. Our results indicate that the NN of the forepaw in S1 and M1 corresponds to a neuronal population, where the functionality is independent of the different types of sensory and motor processing. However, the morphological differences found between the cortical compartments of S1 and M1, as well as the higher density of NNs found in S1, indicate that the release of NO varies between the areas.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here