z-logo
Premium
Adult neurogenesis in crayfish: Origin, expansion, and migration of neural progenitor lineages in a pseudostratified neuroepithelium
Author(s) -
Brenneis Georg,
Beltz Barbara S.
Publication year - 2020
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.24820
Subject(s) - neurogenesis , biology , multicellular organism , neural stem cell , niche , progenitor cell , neuroepithelial cell , neuroscience , stem cell , microbiology and biotechnology , evolutionary biology , cell , ecology , genetics
Two decades after the discovery of adult‐born neurons in the brains of decapod crustaceans, the deutocerebral proliferative system (DPS) producing these neural lineages has become a model of adult neurogenesis in invertebrates. Studies on crayfish have provided substantial insights into the anatomy, cellular dynamics, and regulation of the DPS. Contrary to traditional thinking, recent evidence suggests that the neurogenic niche in the crayfish DPS lacks self‐renewing stem cells, its cell pool being instead sustained via integration of hemocytes generated by the innate immune system. Here, we investigated the origin, division and migration patterns of the adult‐born neural progenitor (NP) lineages in detail. We show that the niche cell pool is not only replenished by hemocyte integration but also by limited numbers of symmetric cell divisions with some characteristics reminiscent of interkinetic nuclear migration. Once specified in the niche, first generation NPs act as transit‐amplifying intermediate NPs that eventually exit and produce multicellular clones as they move along migratory streams toward target brain areas. Different clones may migrate simultaneously in the streams but occupy separate tracks and show spatio‐temporally flexible division patterns. Based on this, we propose an extended DPS model that emphasizes structural similarities to pseudostratified neuroepithelia in other arthropods and vertebrates. This model includes hemocyte integration and intrinsic cell proliferation to synergistically counteract niche cell pool depletion during the animal's lifespan. Further, we discuss parallels to recent findings on mammalian adult neurogenesis, as both systems seem to exhibit a similar decoupling of proliferative replenishment divisions and consuming neurogenic divisions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here