z-logo
Premium
Comparative neuroanatomy of ctenophores: Neural and muscular systems in Euplokamis dunlapae and related species
Author(s) -
Norekian Tigran P.,
Moroz Leonid L.
Publication year - 2020
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.24770
Subject(s) - biology , neuroanatomy , lineage (genetic) , anatomy , evolutionary biology , neuroscience , gene , biochemistry
Ctenophora is an early‐branching basal metazoan lineage, which may have evolved neurons and muscles independently from other animals. However, despite the profound diversity among ctenophores, basal neuroanatomical data are limited to representatives of two genera. Here, we describe the organization of neuromuscular systems in eight ctenophore species focusing on Euplokamis dunlapae —the representative of the lineage sister to all other ctenophores. Cydippids ( Hormiphora hormiphora and Dryodora glandiformis ) and lobates ( Bolinopsis infundibulum and Mnemiopsis leidyi ) were used as reference platforms to cover both morphological and ecological diversity within the phylum. We show that even with substantial environmental differences, the basal organization of neural systems is conserved among ctenophores. In all species, we detected two distributed neuronal subsystems: the subepithelial polygonal network and the mesogleal elements. Nevertheless, each species developed specific innovations in neural, muscular, and receptor systems. Most notable Euplokamis ‐specific features are the following: (a) Comb nerves with giant axons. These nerves directly coordinate the rapid escape response bypassing the central integrative structure known as the aboral sensory organ. (b) Neural processes in tentacles along the rows of “boxes” providing structural support and located under striated muscles. (c) Radial muscles that cross the mesoglea and connect the outer wall to the aboral canal. (d) Flat muscles, encircling each meridional canal. Also, we detected a structurally different rectangular neural network in the feeding lobes of Lobata ( Mnemiopsis/Bolinopsis ) but not in other species. The described lineage‐specific innovations can be used for future single‐cell atlases of ctenophores and analyses of neuronal evolution in basal metazoans.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here