z-logo
Premium
Laminar segregation of GABAergic neurons in the avian nucleus isthmi pars magnocellularis: A retrograde tracer and comparative study
Author(s) -
Faunes Macarena,
Fernández Sara,
GutiérrezIbáñez Cristián,
Iwaniuk Andrew N.,
Wylie Douglas R.,
Mpodozis Jorge,
Karten Harvey J.,
Marín Gonzalo
Publication year - 2013
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.23253
Subject(s) - biology , neuroscience , gabaergic , nucleus , biocytin , anatomy , zebra finch , posterior commissure , anterograde tracing , central nervous system , inhibitory postsynaptic potential
The isthmic complex is part of a visual midbrain circuit thought to be involved in stimulus selection and spatial attention. In birds, this circuit is composed of the nuclei isthmi pars magnocellularis (Imc), pars parvocellularis (Ipc), and pars semilunaris (SLu), all of them reciprocally connected to the ipsilateral optic tectum (TeO). The Imc conveys heterotopic inhibition to the TeO, Ipc, and SLu via widespread γ‐aminobutyric acid (GABA)ergic axons that allow global competitive interactions among simultaneous sensory inputs. Anatomical studies in the chick have described a cytoarchitectonically uniform Imc nucleus containing two intermingled cell types: one projecting to the Ipc and SLu and the other to the TeO. Here we report that in passerine species, the Imc is segregated into an internal division displaying larger, sparsely distributed cells, and an external division displaying smaller, more densely packed cells. In vivo and in vitro injections of neural tracers in the TeO and the Ipc of the zebra finch demonstrated that neurons from the external and internal subdivisions project to the Ipc and the TeO, respectively, indicating that each Imc subdivision contains one of the two cell types hodologically defined in the chick. In an extensive survey across avian orders, we found that, in addition to passerines, only species of Piciformes and Rallidae exhibited a segregated Imc, whereas all other groups exhibited a uniform Imc. These results offer a comparative basis to investigate the functional role played by each Imc neural type in the competitive interactions mediated by this nucleus. J. Comp. Neurol. 521:1727–1742, 2013. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here