Premium
Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: An in vitro and in vivo analysis
Author(s) -
Furmanski Orion,
Gajavelli Shyam,
Lee Jeung Woon,
Collado Maria E.,
Jergova Stanislava,
Sagen Jacqueline
Publication year - 2009
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.22027
Subject(s) - biology , in vivo , in vitro , neuroscience , embryonic stem cell , microbiology and biotechnology , biochemistry , genetics , gene
Abstract Numerous central nervous system (CNS) disorders share a common pathology in dysregulation of γ‐aminobutyric acid (GABA) inhibitory signaling. Transplantation of GABA‐releasing cells at the site of disinhibition holds promise for alleviating disease symptoms with fewer side effects than traditional drug therapies. We manipulated fibroblast growth factor (FGF)‐2 deprivation and mammalian achaete‐scute homolog (MASH)1 transcription factor levels in an attempt to amplify the default GABAergic neuronal fate in cultured rat embryonic neural precursor cells (NPCs) for use in transplantation studies. Naïve and MASH1 lentivirus‐transduced NPCs were maintained in FGF‐2 or deprived of FGF‐2 for varying lengths of time. Immunostaining and quantitative analysis showed that GABA‐ and β‐III‐tubulin‐immunoreactive cells generally decreased through successive passages, suggesting a loss of neurogenic potential in rat neurospheres expanded in vitro. However, FGF‐2 deprivation resulted in a small, but significantly increased population of GABAergic cells derived from passaged neurospheres. In contrast to naïve and GFP lentivirus‐transduced clones, MASH1 transduction resulted in increased bromodeoxyuridine (BrdU) incorporation and clonal colony size. Western blotting showed that MASH1 overexpression and FGF‐2 deprivation additively increased β‐III‐tubulin and decreased cyclic nucleotide phosphodiesterase (CNPase) expression, whereas FGF‐2 deprivation alone attenuated glial fibrillary acidic protein (GFAP) expression. These results suggest that low FGF‐2 signaling and MASH1 activity can operate in concert to enrich NPC cultures for a GABA neuronal phenotype. When transplanted into the adult rat spinal cord, this combination also yielded GABAergic neurons. These findings indicate that, even for successful utilization of the default GABAergic neuronal precursor fate, a combination of both extrinsic and intrinsic manipulations will likely be necessary to realize the full potential of NSC grafts in restoring function. J. Comp. Neurol. 515:56–71, 2009. © 2009 Wiley‐Liss, Inc.