z-logo
Premium
Evidence for “direct” and “indirect” pathways through the song system basal ganglia
Author(s) -
Farries Michael A.,
Ding Long,
Perkel David J.
Publication year - 2005
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.20464
Subject(s) - biology , basal ganglia , indirect pathway of movement , neuroscience , direct pathway of movement , central nervous system
Song learning in oscine birds relies on a circuit known as the “anterior forebrain pathway,” which includes a specialized region of the avian basal ganglia. This region, area X, is embedded within a telencephalic structure considered homologous to the striatum, the input structure of the mammalian basal ganglia. Area X has many features in common with the mammalian striatum, yet has distinctive traits, including largely aspiny projection neurons that directly innervate the thalamus and a cell type that physiologically resembles neurons recorded in the mammalian globus pallidus. We have proposed that area X is a mixture of striatum and globus pallidus and has the same functional organization as circuits in the mammalian basal ganglia. Using electrophysiological and anatomical approaches, we found that area X contains a functional analog of the “direct” striatopallidothalamic pathway of mammals: axons of the striatal spiny neurons make close contacts on the somata and dendrites of pallidal cells. A subset of pallidal neurons project directly to the thalamus. Surprisingly, we found evidence that many pallidal cells may not project to the thalamus, but rather participate in a functional analog of the mammalian “indirect” pathway, which may oppose the effects of the direct pathway. Our results deepen our understanding of how information flows through area X and provide more support for the notion that song learning in oscines employs physiological mechanisms similar to basal ganglia‐dependent forms of motor learning in mammals. J. Comp. Neurol. 484:93–104, 2005. © 2005 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom