Premium
Evidence for “direct” and “indirect” pathways through the song system basal ganglia
Author(s) -
Farries Michael A.,
Ding Long,
Perkel David J.
Publication year - 2005
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.20464
Subject(s) - biology , basal ganglia , indirect pathway of movement , neuroscience , direct pathway of movement , central nervous system
Song learning in oscine birds relies on a circuit known as the “anterior forebrain pathway,” which includes a specialized region of the avian basal ganglia. This region, area X, is embedded within a telencephalic structure considered homologous to the striatum, the input structure of the mammalian basal ganglia. Area X has many features in common with the mammalian striatum, yet has distinctive traits, including largely aspiny projection neurons that directly innervate the thalamus and a cell type that physiologically resembles neurons recorded in the mammalian globus pallidus. We have proposed that area X is a mixture of striatum and globus pallidus and has the same functional organization as circuits in the mammalian basal ganglia. Using electrophysiological and anatomical approaches, we found that area X contains a functional analog of the “direct” striatopallidothalamic pathway of mammals: axons of the striatal spiny neurons make close contacts on the somata and dendrites of pallidal cells. A subset of pallidal neurons project directly to the thalamus. Surprisingly, we found evidence that many pallidal cells may not project to the thalamus, but rather participate in a functional analog of the mammalian “indirect” pathway, which may oppose the effects of the direct pathway. Our results deepen our understanding of how information flows through area X and provide more support for the notion that song learning in oscines employs physiological mechanisms similar to basal ganglia‐dependent forms of motor learning in mammals. J. Comp. Neurol. 484:93–104, 2005. © 2005 Wiley‐Liss, Inc.