Premium
Olivocochlear efferent innervation of the organ of corti in hypothyroid rats
Author(s) -
Cantos Raquel,
López Dolores E.,
Merchán Jaime A.,
Rueda Joaquín
Publication year - 2003
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.10620
Subject(s) - efferent , biology , superior olivary complex , cochlea , synaptogenesis , anatomy , organ of corti , trapezoid body , neuroscience , auditory system , biotinylated dextran amine , inner ear , efferent nerve , central nervous system , afferent , brainstem , cochlear nucleus
Congenital hypothyroidism induces developmental abnormalities in the auditory receptor, causing deafness due to a poor development of the outer hair cells (OHCs) and a lack of synaptogenesis between these cells and the olivocochlear axons. This efferent innervation is formed by two separate systems: the lateral system, which originates in the lateral superior olive (LSO) and reaches the inner hair cells; and the medial system, which originates in the ventral nucleus of the trapezoid body (VNTB) and innervates the OHCs. A previous study carried out in our laboratory showed that in congenitally hypothyroid animals, the neurons which give rise to the efferent system are normal in number and distribution, although smaller in size. The aim of the present work was to study the efferent fibers in the auditory receptor of hypothyroid animals, by means of stereotaxic injections of biotinylated dextran amine in the nuclei that give rise to the olivocochlear system: LSO and VNTB. In hypothyroid animals, injections in LSO gave rise to lateral olivocochlear fibers lacking their characteristic dense terminal arbors, while injections in the VNTB‐labeled fibers terminating in the spiral bundle region, far from the OHCs with which they normally contact. In the latter case, only a small percentage of labeled fibers reached the OHCs area, giving off only two radial branches maximum. Because the number of neurons which develop into the efferent innervation was normal in hypothyroid animals, we conclude that medial fibers may contact a new target. J. Comp. Neurol. 459:454–467, 2003. © 2003 Wiley‐Liss, Inc.