z-logo
Premium
Embryological origins and development of the rat diaphragm
Author(s) -
Babiuk Randal P.,
Zhang Wei,
Clugston Robin,
Allan Douglas W.,
Greer John J.
Publication year - 2002
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.10503
Subject(s) - biology , mesenchyme , diaphragm (acoustics) , anatomy , myogenesis , phrenic nerve , embryogenesis , microbiology and biotechnology , mesenchymal stem cell , neuroscience , embryo , skeletal muscle , respiratory system , physics , acoustics , loudspeaker
Textbooks of embryology provide a standard set of drawings and text reflecting the traditional interpretation of phrenic nerve and diaphragm development based on anatomical dissections of embryonic tissue. Here, we revisit this issue, taking advantage of immunohistochemical markers for muscle precursors in conjunction with mouse mutants to perform a systematic examination of phrenic‐diaphragm embryogenesis. This includes examining the spatiotemporal relationship of phrenic axon outgrowth and muscle precursors during different stages of myogenesis. Additionally, mutant mice lacking c‐met receptors were used to visualize the mesenchymal substratum of the developing diaphragm in the absence of myogenic cells. We found no evidence for contributions to the diaphragm musculature from the lateral body wall, septum transversum, or esophageal mesenchyme, as standard dogma would state. Nor did the data support the hypothesis that the crural diaphragm is of distinct embryological origins. Rather, we found that myogenic cells and axons destined to form the neuromuscular component of the diaphragm coalesce within the pleuroperitoneal fold (PPF). It is the expansion of these components of the PPF that leads to the formation of the diaphragm. Furthermore, we extended these studies to examine the developing diaphragm in an animal model of congenital diaphragmatic hernia (CDH). We find that malformation of the PPF mesenchymal substratum leads to the defect characteristic of CDH. In summary, the data demonstrates that a significant revision of narratives describing normal and pathological development of the diaphragm is warranted. J. Comp. Neurol. 455:477–487, 2003. © 2002 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here