Premium
Intrinsic connectivity of the rat subiculum: II. Properties of synchronous spontaneous activity and a demonstration of multiple generator regions
Author(s) -
Harris Elana,
Stewart Mark
Publication year - 2001
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.1047
Subject(s) - subiculum , neuroscience , bursting , excitatory postsynaptic potential , electrophysiology , biology , hippocampal formation , population , entorhinal cortex , glutamatergic , pyramidal cell , inhibitory postsynaptic potential , glutamate receptor , dentate gyrus , receptor , biochemistry , demography , sociology
Brain structures that can generate epileptiform activity possess excitatory interconnections among principal cells and a subset of these neurons that can be spontaneously active (“pacemaker” cells). We describe electrophysiological evidence for excitatory interactions among rat subicular neurons. Subiculum was isolated from presubiculum, CA1, and entorhinal cortex in ventral horizontal slices. Nominally zero magnesium perfusate, picrotoxin (100 μM), or NMDA (20 μM) was used to induce spontaneous firing in subicular neurons. Synchronous population activity and the spread of population events from one end of subiculum to the other in isolated subicular subslices indicate that subicular pyramidal neurons are coupled together by excitatory synapses. Both electrophysiological classes of subicular pyramidal cells (bursting and regular spiking) exhibited synchronous activity, indicating that both cell classes are targets of local excitatory inputs. Burst firing neurons were active in the absence of synchronous activity in field recordings, indicating that these cells may serve as pacemaker neurons for the generation of epileptiform activity in subiculum. Epileptiform events could originate at either proximal or distal segments of the subiculum from ventral horizontal slices. In some slices, events originated in both proximal and distal locations and propagated to the other location. Finally, propagation was supported over axonal paths through the cell layer and in the apical dendritic zone. We conclude that subicular burst firing and regular spiking neurons are coupled by means of glutamatergic synapses. These connections may serve to distribute activity driven by topographically organized inputs and to synchronize subicular cell activity. J. Comp. Neurol. 435:506–518, 2001. © 2001 Wiley‐Liss, Inc.