Premium
Developmental changes in the spatial pattern of mesencephalic trigeminal nucleus (Mes5) neuron populations in the developing chick optic tectum
Author(s) -
Sanchez Viviana,
Ferrán José Luis,
PereyraAlfonso Susana,
Scicolone Gabriel,
Rapacioli Melina,
Flores Vladimir
Publication year - 2002
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.10254
Subject(s) - biology , anatomy , population , neural tube , midbrain , neuroscience , tectum , nucleus , neural crest , commissure , neuron , central nervous system , embryo , microbiology and biotechnology , demography , sociology
The developing mesencephalic trigeminal nucleus (nucleus of the fifth cranial nerve; Mes5) is composed of four neuron populations: 1) the medial group, located at the tectal commissure; 2) the lateral group distributed along the optic tectum hemispheres; 3) a group outside the neural tube; and 4) a population located at the posterior commissure. The present work aims to elucidate the site of appearance, temporal evolution, and spatial distribution of the four Mes5 populations during development. According to detailed qualitative observations Mes5 neurons appear as a primitive unique population along a thin dorsal medial band of the mesencephalon. According to quantitative analyses (changes in cell density along defined reference axes performed as a function of time and space), the definitive spatial pattern of Mes5 neurons results from a process of differential cell movements along the tangential plane of the tectal hemispheres. Radial migration does not have a relevant developmental role. Segregation of medial and lateral group populations depends on the intensity of the lateral displacements. The mesenchymal population appears as an outsider subset of neurons that migrate from the cephalic third of the neural tube dorsal midregion to the mesenchymal compartment. This process, together with the intensive lateral displacements that the insider subset undergoes, contributes to the disappearance of this transient population. We cannot find evidence indicating that neural crest‐derived precursors enter the neural tube and differentiate into Mes5 neurons. Our results can be better interpreted in terms of the notion that a dorsal neural tube progenitor cell population behaves as precursor of both migrating peripheral descendants (neural crest) and intrinsic neurons (Mes5). J. Comp. Neurol. 448:337–348, 2002. © 2002 Wiley‐Liss, Inc.