Premium
Metathoracic neurons integrating intersegmental sensory information in the locust
Author(s) -
Matheson Tom
Publication year - 2002
Publication title -
journal of comparative neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.855
H-Index - 209
eISSN - 1096-9861
pISSN - 0021-9967
DOI - 10.1002/cne.10140
Subject(s) - interneuron , biology , sensory system , neuroscience , locust , population , anatomy , stimulation , ganglion , sensory stimulation therapy , wing , inhibitory postsynaptic potential , botany , demography , sociology , engineering , aerospace engineering
This paper describes the morphology and physiology of five types of local interneurons and three types of ascending intersegmental interneurons in the locust metathoracic ganglion that are points of convergence of sensory information from the wings. Four types of spiking local interneurons are members of a population with somata at the ventral midline. They are depolarised by stimulation of a metathoracic wing nerve, suggesting that they encode a sensory representation of this appendage. Some are also depolarised with short latencies following stimulation of a mesothoracic wing nerve, indicating that they collate intersegmental as well as local information. All the local interneurons have branches in the anterior ventral association centre or around the roots of the nerve that carries wing sensory neurons. This distinguishes them from other interneurons in the population. A fifth type of local interneuron that has unusual bilateral branching and is not a member of this population is described for the first time. The ascending interneurons are members of three populations. Neurons of each population have a characteristic pattern of responses to stimulation of the mesothoracic or metathoracic wing nerves, and some respond to tactile stimulation or movements of a hind leg. These latter interneurons thus collate information from both wings and legs. All three types of intersegmental interneurons have branches in the anterior ventral association centre or around the roots of the wing nerve. The responses of the interneurons described here shed new light on both local and intersegmental network function in this model system. J. Comp. Neurol. 444:95–114, 2002. © 2002 Wiley‐Liss, Inc.