
A New Approach to Optimize pH Buffers **
Author(s) -
Blétry Marc
Publication year - 2022
Publication title -
chemistry ‐ methods
Language(s) - English
Resource type - Journals
ISSN - 2628-9725
DOI - 10.1002/cmtd.202100087
Subject(s) - buffer (optical fiber) , computer science , simple (philosophy) , parametric statistics , mathematical optimization , chemistry , biological system , biochemical engineering , mathematics , engineering , telecommunications , philosophy , statistics , epistemology , biology
Buffer solutions are pervasive in chemistry, biochemistry, analytical chemistry, etc. A better understanding of buffer properties and what controls them is susceptible to be of interest in many scientific and technological fields. For instance, linear pH gradients are commonly used in electrophoresis and their optimization rests on numerical optimization of the concentrations of various weak species. It is probably generally assumed that no basic progress could be made on optimization approaches. We introduce here a new strategy to buffer optimization, based on a parametric study of the roots of the first derivative of the buffer index. In this way, it is possible to find mathematically optimal sets of parameters (p K a and concentrations). The method is applied to mixtures of 2, 3 and 4 monovalent species, which represent simple cases that do not call for overly elaborate numerical optimization techniques, but are nevertheless of practical interest in various branches of analytical chemistry.