Premium
Compound Interaction Screen on a Photoactivatable Cellulose Membrane (CISCM) Identifies Drug Targets
Author(s) -
Melder F. Teresa I.,
Lindemann Peter,
Welle Alexander,
Trouillet Vanessa,
Heißler Stefan,
Nazaré Marc,
Selbach Matthias
Publication year - 2022
Publication title -
chemmedchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.817
H-Index - 100
eISSN - 1860-7187
pISSN - 1860-7179
DOI - 10.1002/cmdc.202200346
Subject(s) - diazirine , cellulose , chemistry , membrane , drug target , identification (biology) , combinatorial chemistry , photoaffinity labeling , drug discovery , drug , computational biology , biochemistry , binding site , biology , pharmacology , botany
Identifying the protein targets of drugs is an important but tedious process. Existing proteomic approaches enable unbiased target identification but lack the throughput needed to screen larger compound libraries. Here, we present a compound interaction screen on a photoactivatable cellulose membrane (CISCM) that enables target identification of several drugs in parallel. To this end, we use diazirine‐based undirected photoaffinity labeling (PAL) to immobilize compounds on cellulose membranes. Functionalized membranes are then incubated with protein extract and specific targets are identified via quantitative affinity purification and mass spectrometry. CISCM reliably identifies known targets of natural products in less than three hours of analysis time per compound. In summary, we show that combining undirected photoimmobilization of compounds on cellulose with quantitative interaction proteomics provides an efficient means to identify the targets of natural products.