z-logo
Premium
Evaluation of a Radiolabeled Macrocyclic Peptide as Potential PET Imaging Probe for PD−L1
Author(s) -
Jouini Nedra,
Cardinale Jens,
Mindt Thomas L.
Publication year - 2022
Publication title -
chemmedchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.817
H-Index - 100
eISSN - 1860-7187
pISSN - 1860-7179
DOI - 10.1002/cmdc.202200091
Subject(s) - internalization , peptide , in vivo , in vitro , chemistry , ligand (biochemistry) , peptide synthesis , cancer research , pd l1 , molecular imaging , cell , combinatorial chemistry , cancer , biochemistry , receptor , immunotherapy , medicine , biology , microbiology and biotechnology
The interaction between the immune checkpoint PD‐1 and PD−L1 promotes T‐cell deactivation and cancer proliferation. Therefore, immune checkpoint inhibition therapy, which relies on prior assessment of the target, has been widely used for many cancers. As a non‐invasive molecular imaging tool, radiotracers bring novel information on the in vivo expression of biomarkers (e. g., PD−L1), enabling a personalized treatment of patients. Our work aimed at the development of a PD−L1‐specific, peptide‐based PET radiotracer. We synthesized and evaluated a radiolabeled macrocyclic peptide adapted from a patent by Bristol Myers Squibb. Synthesis of [ 68 Ga]Ga‐NJMP1 yielded a product with a radiochemical purity>95 % that was evaluated in vitro . However, experiments on CHO−K1 hPD−L1 cells showed very low cell binding and internalization rates of [ 68 Ga]Ga‐NJMP1 in comparison to a control radiopeptide (WL12). Non‐radioactive cellular assays using time‐resolved fluorescence energy transfer confirmed the low affinity of the reported parent peptide and the DOTA‐derivatives towards PD−L1. The results of our studies indicate that the macrocyclic peptide scaffold reported in the patent literature is not suitable for radiotracer development due to insufficient affinity towards PD−L1 and that C‐terminal modifications of the macrocyclic peptide interfere with important ligand/receptor interactions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom