z-logo
Premium
Synthesis of Novel Pyridine‐Carboxylates as Small‐Molecule Inhibitors of Human Aspartate/Asparagine‐β‐Hydroxylase
Author(s) -
Brewitz Lennart,
Tumber Anthony,
Thalhammer Armin,
Salah Eidarus,
Christensen Kirsten E.,
Schofield Christopher J.
Publication year - 2020
Publication title -
chemmedchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.817
H-Index - 100
eISSN - 1860-7187
pISSN - 1860-7179
DOI - 10.1002/cmdc.202000147
Subject(s) - chemistry , pyridine , stereochemistry , thioether , oxygenase , asparagine , enzyme , combinatorial chemistry , biochemistry , organic chemistry
Abstract The human 2‐oxoglutarate (2OG)‐dependent oxygenase aspartate/asparagine‐β‐hydroxylase (AspH) is a potential medicinal chemistry target for anticancer therapy. AspH is present on the cell surface of invasive cancer cells and accepts epidermal growth factor‐like domain (EGFD) substrates with a noncanonical (i. e., Cys 1–2, 3–4, 5–6) disulfide pattern. We report a concise synthesis of C‐3‐substituted derivatives of pyridine‐2,4‐dicarboxylic acid (2,4‐PDCA) as 2OG competitors for use in SAR studies on AspH inhibition. AspH inhibition was assayed by using a mass spectrometry‐based assay with a stable thioether analogue of a natural EGFD AspH substrate. Certain C‐3‐substituted 2,4‐PDCA derivatives were potent AspH inhibitors, manifesting selectivity over some, but not all, other tested human 2OG oxygenases. The results raise questions about the use of pyridine‐carboxylate‐related 2OG analogues as selective functional probes for specific 2OG oxygenases, and should aid in the development of AspH inhibitors suitable for in vivo use.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here