Premium
Investigation of Dipicolinic Acid Isosteres for the Inhibition of Metallo‐β‐Lactamases
Author(s) -
Chen Allie Y.,
Thomas Pei W.,
Cheng Zishuo,
Xu Nasa Y.,
Tierney David L.,
Crowder Michael W.,
Fast Walter,
Cohen Seth M.
Publication year - 2019
Publication title -
chemmedchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.817
H-Index - 100
eISSN - 1860-7187
pISSN - 1860-7179
DOI - 10.1002/cmdc.201900172
Subject(s) - dipicolinic acid , isostere , chemistry , carboxylate , stereochemistry , ternary complex , combinatorial chemistry , beta lactamase inhibitors , binding site , biochemistry , enzyme , biology , microbiology and biotechnology , spore
New Delhi metallo‐β‐lactamase‐1 (NDM‐1) poses an immediate threat to our most effective and widely prescribed drugs, the β‐lactam‐containing class of antibiotics. There are no clinically relevant inhibitors to combat NDM‐1, despite significant efforts toward their development. Inhibitors that use a carboxylic acid motif for binding the Zn II ions in the active site of NDM‐1 make up a large portion of the >500 inhibitors reported to date. New and structurally diverse scaffolds for inhibitor development are needed urgently. Herein we report the isosteric replacement of one carboxylate group of dipicolinic acid (DPA) to obtain DPA isosteres with good inhibitory activity against NDM‐1 (and related metallo‐β‐lactamases, IMP‐1 and VIM‐2). It was determined that the choice of carboxylate isostere influences both the potency of NDM‐1 inhibition and the mechanism of action. Additionally, we show that an isostere with a metal‐stripping mechanism can be re‐engineered into an inhibitor that favors ternary complex formation. This work provides a roadmap for future isosteric replacement of routinely used metal binding motifs (i.e., carboxylic acids) for the generation of new entities in NDM‐1 inhibitor design and development.