Premium
Synthetic Indolactam V Analogues as Inhibitors of PAR2‐Induced Calcium Mobilization in Triple‐Negative Breast Cancer Cells
Author(s) -
Stein Jan,
Stahn Sonja,
Neudörfl JörgM.,
Sperlich Julia,
Schmalz HansGünther,
Teusch Nicole
Publication year - 2018
Publication title -
chemmedchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.817
H-Index - 100
eISSN - 1860-7187
pISSN - 1860-7179
DOI - 10.1002/cmdc.201700640
Subject(s) - chemistry , antagonism , indole test , transmembrane protein , selectivity , structure–activity relationship , receptor , g protein coupled receptor , natural product , protein kinase c , enzyme , stereochemistry , biochemistry , in vitro , catalysis
Abstract Human proteinase‐activated receptor 2 (PAR2), a transmembrane G‐protein‐coupled receptor (GPCR), is an attractive target for a novel anticancer therapy, as it plays a critical role in cell migration and invasion. Selective PAR2 inhibitors therefore have potential as anti‐metastatic drugs. Knowing that the natural product teleocidin A2 is able to inhibit PAR2 in tumor cells, the goal of the present study was to elaborate structure–activity relationships and to identify potent PAR2 inhibitors with lower activity against the adverse target, protein kinase C (PKC). For this purpose, an efficient gram‐scale total synthesis of indolactam V (i.e., the parent structure of all teleocidins) was developed, and a library of derivatives was prepared. Some compounds were indeed found to exhibit high potency as PAR2 inhibitors at low nanomolar concentrations with improved selectivity (relative to teleocidin A2). The pseudopeptidic fragment bridging the C3 and C4 positions of the indole core proved to be essential for target binding, whereas activity and target selectivity depends on the substituents at N1 or C7. This study revealed novel derivatives that show high efficacy in PAR2 antagonism combined with increased selectivity.