Premium
Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides
Author(s) -
Zhang Ruiyan,
Loers Gabriele,
Schachner Melitta,
Boelens Rolf,
Wienk Hans,
Siebert Simone,
Eckert Thomas,
Kraan Stefan,
RojasMacias Miguel A.,
Lütteke Thomas,
Galuska Sebastian P.,
Scheidig Axel,
Petridis Athanasios K.,
Liang Songping,
Billeter Martin,
Schauer Roland,
Steinmeyer Jürgen,
Schröder JensMichael,
Siebert HansChristian
Publication year - 2016
Publication title -
chemmedchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.817
H-Index - 100
eISSN - 1860-7187
pISSN - 1860-7179
DOI - 10.1002/cmdc.201500609
Subject(s) - polysialic acid , glycan , receptor , polysaccharide , sulfation , biochemistry , biology , chemistry , computational biology , neuroscience , microbiology and biotechnology , cell , neural cell adhesion molecule , cell adhesion , glycoprotein
Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand–receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK‐1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo‐ and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions.