z-logo
Premium
Comparison of Structure‐ and Ligand‐Based Virtual Screening Protocols Considering Hit List Complementarity and Enrichment Factors
Author(s) -
Krüger Dennis M.,
Evers Andreas
Publication year - 2010
Publication title -
chemmedchem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.817
H-Index - 100
eISSN - 1860-7187
pISSN - 1860-7179
DOI - 10.1002/cmdc.200900314
Subject(s) - virtual screening , docking (animal) , computer science , computational biology , structural similarity , data mining , drug discovery , artificial intelligence , bioinformatics , biology , medicine , nursing
Structure‐ and ligand‐based virtual‐screening methods (docking, 2D‐ and 3D‐similarity searching) were analysed for their effectiveness in virtual screening against four different targets: angiotensin‐converting enzyme (ACE), cyclooxygenase 2 (COX‐2), thrombin and human immunodeficiency virus 1 (HIV‐1) protease. The relative performance of the tools was compared by examining their ability to recognise known active compounds from a set of actives and nonactives. Furthermore, we investigated whether the application of different virtual‐screening methods in parallel provides complementary or redundant hit lists. Docking was performed with GOLD, Glide, FlexX and Surflex. The obtained docking poses were rescored by using nine different scoring functions in addition to the scoring functions implemented as objective functions in the docking algorithms. Ligand‐based virtual screening was done with ROCS (3D‐similarity searching), Feature Trees and Scitegic Functional Fingerprints (2D‐similarity searching). The results show that structure‐ and ligand‐based virtual‐screening methods provide comparable enrichments in detecting active compounds. Interestingly, the hit lists that are obtained from different virtual‐screening methods are generally highly complementary. These results suggest that a parallel application of different structure‐ and ligand‐based virtual‐screening methods increases the chance of identifying more (and more diverse) active compounds from a virtual‐screening campaign.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here