Premium
Dynamic motions of molecular motors in the actin cytoskeleton
Author(s) -
Jung Wonyeong,
Tabatabai A. Pasha,
Thomas Jacob J.,
Tabei S. M. Ali,
Murrell Michael P.,
Kim Taeyoon
Publication year - 2019
Publication title -
cytoskeleton
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.95
H-Index - 86
eISSN - 1949-3592
pISSN - 1949-3584
DOI - 10.1002/cm.21582
Subject(s) - biology , cytoskeleton , actin , molecular motor , microbiology and biotechnology , actin cytoskeleton , motor protein , microtubule , genetics , cell
During intracellular transport, cellular cargos, such as organelles, vesicles, and proteins, are transported within cells. Intracellular transport plays an important role in diverse cellular functions. Molecular motors walking on the cytoskeleton facilitate active intracellular transport, which is more efficient than diffusion‐based passive transport. Active transport driven by kinesin and dynein walking on microtubules has been studied well during recent decades. However, mechanisms of active transport occurring in disorganized actin networks via myosin motors remain elusive. To provide physiologically relevant insights, we probed motions of myosin motors in actin networks under various conditions using our well‐established computational model that rigorously accounts for the mechanical and dynamical behaviors of the actin cytoskeleton. We demonstrated that myosin motions can be confined due to three different reasons in the absence of F‐actin turnover. We verified mechanisms of motor stalling using in vitro reconstituted actomyosin networks. We also found that with F‐actin turnover, motors consistently move for a long time without significant confinement. Our study sheds light on the importance of F‐actin turnover for effective active transport in the actin cytoskeleton.