z-logo
Premium
Removal of Selenium Species from Waters Using Various Surface‐Modified Natural Particles and Waste Materials
Author(s) -
Yigit Nevzat O.,
Tozum Seda
Publication year - 2012
Publication title -
clean – soil, air, water
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 66
eISSN - 1863-0669
pISSN - 1863-0650
DOI - 10.1002/clen.201100740
Subject(s) - selenate , adsorption , pumice , selenium , chemistry , iron oxide , oxide , inorganic chemistry , specific surface area , nuclear chemistry , chemical engineering , organic chemistry , catalysis , volcano , seismology , engineering , geology
Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH pzc values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first‐order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5–10 µg/L) can be achieved by these particles. These low‐cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here