Premium
Bi‐Solute Sorption of Estrogens at Low Concentration: Two‐ and Three‐Parametric Analysis
Author(s) -
Kumar A. Kiran,
Babu P. Suresh,
Mohan S. Venkata
Publication year - 2012
Publication title -
clean – soil, air, water
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 66
eISSN - 1863-0669
pISSN - 1863-0650
DOI - 10.1002/clen.201100532
Subject(s) - sorption , freundlich equation , langmuir , adsorption , chemistry , kinetics , thermodynamics , aqueous solution , chromatography , organic chemistry , physics , quantum mechanics
Competitive sorption of estriol (E3) and 17α‐ethinylestradiol (EE2) was studied on activated charcoal. Better sorption of E3 (88.9%) and EE2 (69.5%) was observed with single‐solute sorption system than with bi‐solute sorption system. Single‐solute sorption kinetics of E3 and EE2 were evaluated with two (Langmuir and Freundlich) and three (dual mode and Song) parameter models. Freundlich model ( R 2 , 0.9915 (E3); 0.9875 (EE2)) showed good prediction compared to other models for single‐solute sorption. Adsorption capacity documented reduced efficacy (86.4% (E3); 65.9% (EE2)) due to induced competitive behavior between the estrogens in aqueous phase. Bi‐solute adsorption kinetics of E3 and EE2 were described by IAST with two and three parameter models. Among these models, IAST‐Freundlich model ( R 2 , 0.9765 (E3); 0.9985 (EE2)) was best in predicting bi‐solute sorption of E3 and EE2 by activated charcoal. All these models showed favorable representation of both single‐ and bi‐solute sorption behaviors.