Premium
SGBR Performance on the Basis of Color and COD Removal from Textile Wastewater
Author(s) -
Debik Eyup,
Coban Asli,
Kaykioglu Gul,
Kayacan Bergin Beril
Publication year - 2012
Publication title -
clean – soil, air, water
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 66
eISSN - 1863-0669
pISSN - 1863-0650
DOI - 10.1002/clen.201100327
Subject(s) - effluent , chemical oxygen demand , textile , pulp and paper industry , hydraulic retention time , corn stover , wastewater , chemistry , biofilter , mathematics , environmental science , environmental engineering , materials science , engineering , composite material , food science , fermentation
Abstract This study focused on removal of color and chemical oxygen demand (COD) parameter from textile effluents using a static granular bed reactor (SGBR), which has never been used to treat textile effluents previously. With an organic loading rate (OLR) of 1 kg/m 3 day and a hydraulic retention time (HRT) of 48 h, COD and color removal efficiencies were 74 and 61%, respectively, while the removal efficiencies were 72 and 57%, respectively, with OLR of 1.7 kg/(m 3 day) and HRT of 24 h. It was concluded that the SGBR could be used as an alternative method to treat and decolorize textile effluents. First order and modified Stover–Kincannon models were used to develop a kinetic model using the experimental data with correlation coefficients ( R 2 ) of 0.39 and 0.94, respectively. In regard with the calculated correlation coefficients, modified Stover–Kincannon model, which was used to model anerobic biofilters in previous studies, fitted best with the experimental data and it was stated that SGBR worked as an anerobic biofilter.