Premium
Biodegradation Studies on Acid Violet 19, a Triphenylmethane Dye, by Pseudomonas aeruginosa BCH
Author(s) -
Jadhav Shekhar B.,
Yedurkar Snehal M.,
Phugare Swapnil S.,
Jadhav Jyoti P.
Publication year - 2012
Publication title -
clean – soil, air, water
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 66
eISSN - 1863-0669
pISSN - 1863-0650
DOI - 10.1002/clen.201100236
Subject(s) - crystal violet , triphenylmethane , biodegradation , chemistry , malachite green , laccase , nuclear chemistry , methyl violet , food science , chromatography , organic chemistry , microbiology and biotechnology , enzyme , biology , adsorption
Acid violet 19 (AV) belongs to the triphenylmethane (TPM) class of dyes which are potentially mutagenic or carcinogenic. However, very little studies on biodegradation of AV were reported as compared to other TPM dyes such as malachite green and crystal violet. In this study, AV was decolorized up to 98% within 30 min by Pseudomonas aeruginosa BCH. The decolorization depends on the initial dye concentration, pH, and temperature. However, the dye was decolorized under wide pH and temperature ranges with an optimum of pH 7 and 30°C. Up to 250 mg L −1 of dye was found to be tolerated and decolorized by this strain. It showed decolorization ability for seven repeated dye addition cycles. The effect of additional carbon sources on dye decolorization was studied in which mannitol containing medium showed decolorization in 15 min. Induction in the enzyme activities of laccase, NADH‐DCIP reductase, and veratryl alcohol oxidase (VAO) indicates their involvement in AV degradation. Various analytical studies viz. UV–VIS, HPTLC, HPLC, and FTIR confirmed the biodegradation of AV by the bacterium. Based on GC‐MS analysis, a possible degradation pathway for AV was proposed. The phytotoxicity studies using Phaseolus mungo and Sorghum vulgare revealed the less toxic nature of metabolites formed after AV degradation.