Premium
Evaluation of Two Low‐Cost–High‐Performance Adsorbent Materials in the Waste‐to‐Product Approach for the Removal of Pesticides from Drinking Water
Author(s) -
Thuy Pham Thi,
Anh Nguyen Viet,
van der Bruggen Bart
Publication year - 2012
Publication title -
clean – soil, air, water
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 66
eISSN - 1863-0669
pISSN - 1863-0650
DOI - 10.1002/clen.201100209
Subject(s) - activated carbon , adsorption , bamboo , pesticide , freundlich equation , chemistry , powdered activated carbon treatment , carbon fibers , pulp and paper industry , environmental chemistry , waste management , organic chemistry , materials science , composite material , agronomy , engineering , composite number , biology
This study evaluates the performance of two low cost and high performance adsorption materials, i.e., activated carbon produced from two natural waste products: Bamboo and coconut shell, in the removal of three pesticides from drinking water sources. Due to the fact that bamboo and coconut shell are abundant and inexpensive materials in many parts of the world, they respond to the “low‐cost” aspect. The adsorption capacities of two local adsorbents have been compared with commercial activated carbon to explore their potential to respond to the “high quality” aspect. Two pesticides were selected, namely dieldrin and chlorpyrifos, because they are commonly used in agriculture activities, and may remain in high concentrations in surface water used as drinking water sources. The results indicate that the adsorption of pesticides on activated carbons is influenced by physico‐chemical properties of the activated carbon and the pesticides such as the presence of an aromatic ring, and their molar mass. The activated carbon produced from bamboo can be employed as low‐cost and high performance adsorbent, alternative to commercial activated carbon for the removal of pesticides during drinking water production. The performance of activated carbon from bamboo was better due to its relatively large macroporosity and planar surface. The effect of adsorbent and pesticide characteristics on the performance was derived from batch experiments in which the adsorption behavior was studied on the basis of Freundlich isotherms.