Premium
Particle Shapes in the Drinking Water Filtration Process
Author(s) -
Zielina Michał
Publication year - 2011
Publication title -
clean – soil, air, water
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 66
eISSN - 1863-0669
pISSN - 1863-0650
DOI - 10.1002/clen.201000432
Subject(s) - suspension (topology) , filtration (mathematics) , flocculation , particle (ecology) , materials science , filter (signal processing) , process (computing) , sedimentation , microfiltration , mechanics , chromatography , biological system , chemistry , mathematics , environmental science , physics , environmental engineering , computer science , geology , membrane , statistics , oceanography , sediment , paleontology , biochemistry , homotopy , pure mathematics , computer vision , operating system , biology
Depth filtration is still one of the most important water treatment processes. It remains difficult to model mathematically because of the complexity of the process and the impact of numerous suspension parameters. The shape of the grains and suspension particles or flocs are among these parameters. The results of theoretical calculations suggest their visible impact on filtration. The shape of the media grain is relatively easy to measure. The shapes of the flocs or suspension particles, which are commonly not perfectly spherical, are much more difficult to predict. However, a few apparatuses developed lasting recent years make this possible. The FPIA 3000, manufactured by Malvern Instruments, uses flow particle image analysis method to measure 26 shape parameters of the suspension particles. Experimental measurement of suspension particle shape after flocculation and after depth filtration has allowed us to answer the question regarding the possible application of this measuring technique in water filtration technology. The experiments have also provided us with detailed information about the shape of flocs and suspension particles in filtered water. High number of particles characterized by circularity lower than 0.8 was detected in flocculated water inflowing to the filter. The particles remained in the outflow was characterized by visibly higher circularity than the particles inflowing to the filter. The results revealed much better removal of the particles characterized by lower circularity during filtration, whereas relation between convexity of the particles and their removal efficiency was not so evident.