Premium
Adsorption of Chromium(III), Nickel(II), and Copper(II) from Aqueous Solution by Activated Alumina
Author(s) -
Rajurkar Nilima S.,
Gokarn Ashok N.,
Dimya Kumaree
Publication year - 2011
Publication title -
clean – soil, air, water
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 66
eISSN - 1863-0669
pISSN - 1863-0650
DOI - 10.1002/clen.201000273
Subject(s) - adsorption , endothermic process , chemistry , freundlich equation , aqueous solution , metal ions in aqueous solution , nickel , metal , chromium , copper , particle size , langmuir , inorganic chemistry , nuclear chemistry , activated alumina , organic chemistry
The possible use of activated alumina powder (AAP) as adsorbent for Cr(III), Ni(II), and Cu(II) from synthetic solutions was investigated. The effect of various parameters on batch adsorption process such as pH, contact time, adsorbent dosage, particle size, temperature, and initial metal ions concentration were studied to optimize the conditions for maximum metal ion removal. Both higher (molar) and lower (ppm) initial metal ion concentration sets were subjected to adsorption on AAP. Adsorption process revealed that equilibrium was established in 50 min for Cr(III) at pH 4.70, 80 min for Ni(II) at pH 7.00, and 40 min for Cu(II) at pH 3.02. Percentage removal was found to be highest at 55°C for Cr(III) and Ni(II) with 420 µm and 45°C for Cu(II) with 250‐µm particle size AAP. A dosage of 2 g for Cr(III), 8 g for Ni(II), and 10 g Cu(II) gave promising data in the metal ion removal. The adsorption process followed Langmuir as well as Freundlich models. The thermodynamics of adsorption of these metal ions on activated aluminum indicated that the adsorption was spontaneous and endothermic in nature. Present study indicates that AAP can act as a promising adsorbent for industrial wastewater treatment.